Undulating or linear periodization?


incognito
 Share

Recommended Posts

blandt flere af fagfolkene og de selvbetaltede netguruer indenfor træning og muskelbiologi, har der været tale om undulating periodization(UP) som et måske bedre alternativ til lineære periodiseringsmodeller (LP). For dem, der ikke måtte være bekendte med disse udtryl så dækker lineær periodisering over træningsmodeller, med en grundtræningsperiode med højvolumen og lav intensitet, der progredierer gradvist til en peaking del, hvor volumen falder og intensiteten stiger, faktisk ikke ulig HST. Undulerende periodisering er karakteriseret ved at man cycler intensitet og volumen fra dag til dag, så man måske laver 3x12 mandag, 4x8 onsdag og 5x4 fredag og så forfra næste uge.

LP er generelt træningsmodeller uden variation i volumen og intensitet overlegne.

Et enkelt komparativt studie viser UP lidt bedre end LP, mht. til styrkegains:

http://www.ncbi.nlm.nih.gov/entrez/query.f...l=pubmed_docsum

(Jeg ved desuden at et big shot som Kraemer taler varmt for UP modeller på faglige konferencer)

Det er jo meget interessant, (hvis det passer) at disse udsving i intensitet og volumen fra dag til dag rent faktisk er så givtige og det bider jo BB'ere snak om at forvirre musklerne fint i halen (selvom vi normalt har så travlt med at afvise det).

Jeg kan ikke lade være med at tænke på hvordan forskellige program setups involverende dette ville fungere. Her er der et par eksempler (det er meget generelt og kun betragtninger om hvordan intensitet og volumen kan cycles)

LP/UP hybrid

Uge 1 - dag 1: 2x18

Uge 1 - dag 2: 3x12

Uge 1 - dag 3: 4x6

Uge 2 - dag 1: 2x15

Uge 2 - dag 2: 3x10

Uge 2 - dag 3: 4x5

Uge 3 - dag 1: 2x12

Uge 3 - dag 2: 3x8

Uge 3 - dag 3: 4x4

Uge 4 - dag 1: 2x9

Uge 4 - dag 2: 3x6

Uge 4 - dag 3: 4x3

Uge 5 - dag 1: 2x6

Uge 5 - dag 2: 3x4

Uge 5 - dag 3: 4x2

Hvor alle sæt ligger på cirka 95% af deres tilsvarende RM. Skulle man endelig lave nogle betragtninger om øvelsesvalg i et sådan setup, kunne man måske være mere isolationsagtig på dagene med høje reps end dagene med lave reps.

Der kommer mere senere... nu må jeg vist hellere kigge lidt på mit speciale...

Link to comment
Share on other sites

Lyder spændende, har selv overvejet noget lignende til mit næste program. Så skyd bare specialet lidt, det her er vigtigere :tongue:

Men hvorfor har du holdt sæt tallet konstant? Umiddelbart vil det virke mere logisk gradvist at øge antal sæt samtidigt med et fald i reps.

Edited by Dines
Link to comment
Share on other sites

Det ER interessant. Man kan også tænke over et par variable mere:

1. Gradvist stigende intensitet, så man starter med 85% af 12 rm og øger gradvist imod 100% af 12rm for flere sæti slutningen af cyklussen (man skulle jo gerne være blevet stærkere).

Dette gør man for alle rep-ranges. Evt med et fald i volumen imod slutningen af cyklussen.

2. Hvor ofte varieres der? Alt efter hvordan man best responderer/restituerer på træningen, kan man variere fra gang til gang, uge til uge, efter 2 træningspas etc..

Hele idéen med at variere over en uge er vel at stresse forskellige restitutive kapaciteter over en uge for at lade kroppen restituere fra en type belastning, imens man pøfører en anden type belastning. Hvor ofte der skal skiftes må afhænge af hvor hurtigt man tilpasser sig en given rep range/hvor erfaren man er og hvor lang tids restitution en given belastning kræver.

3. Skal der være et lige forhold imellem antallet af 12rep pas og 4rep pas? Hvis man fokuserer mere på styrke og respondere bedre på tunge vægte skal man måske have en højere procentdel 4rep pas?

Kan godt lide teorien og idéen bag systemet :smile:

Link to comment
Share on other sites

DUP har været et velkendt fænomen gennem længere tid (1993), men har aldrig vundet indpas i de 'traditionelle' træningssystemer.

Den konservative holdning har altid været, at når et program er udviklet, er det godt som det er og der skal ikke foretages ændringer.

Variation har altid været nøglen til fremgang, men forskning viser, at ændring i øvelsesmønstret ikke er det fundamentale for kontinuerlig fremgang, derimod variationen i repsantallet.

Efter senest 4-6 træningspas skal repsantallet variere for maksimal stimulans, mens man kan bruge samme øvelser i 6-8 uger inden stagnation begynder at optræde.

Kommer Incognito med mere fyldestgørende stof, kan jeg anbefale at det bliver læst, hans indlæg er godt underbygget.

Selv har jeg anvendt DUP siden i sommers og det har været med stor succes.

Om det har lige så stor indvirkning på alle, vides ikke, så hermed ingen garantier givet.

Et skema til illustration:

post-9788-1138488784_thumb.jpg

Link to comment
Share on other sites

nu kommer jeg fra en ren praktisk baggrund (indenfor styrketræningen), men kunne man ikke bruge UP udelukkende på intensiteten. Altså holde rep-antallet fast, men lade %-rm svinge efter et fast forudbestemt mønster?? Det synes jeg selv har virket ret godt for mig ved flere lejligheder..

Efter senest 4-6 træningspas skal repsantallet variere for maksimal stimulans, mens man kan bruge samme øvelser i 6-8 uger inden stagnation begynder at optræde.
er det ikke en meget generaliserende udtalelse? Jeg mener, vægtløftere kan jo køre med de samme øvelser igen og igen og bygge op i intensitet, "opdage" teknikfejl, deloade, bygge op i intensitet igen med fokus på funde teknikfejl osv osv.. Dette kan vel også gælde for andre styrkeøvelser! Jeg vil mene at man kan køre benbøjninger året rundt uden at få ringere resultater end hvis man cyklede frem og tilbage i øvelser. Selvfølgelig skulle der forekomme variation, men vil ikke nødvendigvis mener at øvelsesvalget absolut skulle være en del af dette.. :smile:

EDIT:

Variation har altid været nøglen til fremgang, men forskning viser, at ændring i øvelsesmønstret ikke er det fundamentale for kontinuerlig fremgang, derimod variationen i repsantallet.

Okay, du skriver så også selv at øvelsesvariation ikke er det primære for fremgang. Men vil stadig mene at ovestående melding ikke er helt korrekt.. :smile:

Edited by Francis
Link to comment
Share on other sites

Men hvis alle forsøgene og teorierne omkring RBE passer, vil man jo spilde en masse træning. Hvis musklerne har vænnet sig til en tung belastning, og så bliver udsat for en let, mens de stadig er konditionerede til den tunge, vil træningen ikke være meget værd.

Bare en tanke, men det ville ødelægge hele princippet bag periodiseringen. Da det kun vil være 1-2 dage om ugen kroppen vil reagere på belastningen.

Link to comment
Share on other sites

Men hvis alle forsøgene og teorierne omkring RBE passer, vil man jo spilde en masse træning. Hvis musklerne har vænnet sig til en tung belastning, og så bliver udsat for en let, mens de stadig er konditionerede til den tunge, vil træningen ikke være meget værd.

Bare en tanke, men det ville ødelægge hele princippet bag periodiseringen. Da det kun vil være 1-2 dage om ugen kroppen vil reagere på belastningen.

Det er jo ikke den samme belastning, hvis rep antallet og belastningen er en anden.

Bare det at vægten ændres er nok til at ændre koordinationen og tyngdepunktet i et løft.

Derudover er den fysiologiske respons på 3x12RM en anden end 3x3RM.

Link to comment
Share on other sites

Ja, men hvis man ser firkantet på det. Hvis man går ud fra at når musklen har tilpasset sig en hvis belastning, så vil en belastning lettere en denne, ikke medføre en hypertrofisk effekt. Hvis vi snakker styrkeløft er sagen en anden.

Kurven over RBE, er høj i starten(stor volumen, lav intensitet), og efterhånden som volumen falder og intensiteten stiger, flader kurven ud, og det tager længere tid før vægtene ikke har noget træningsstimulus.

Dvs. at når den mekaniske belastning, det antal kg, som musklen er konditioneret til, er på x antal kg. Vil <x være uden hypertrofisk effekt.

hvis kroppen er vandt til en belastning på 100 kg, og man løfter 70kg, vil det jo ikke give det samme, på trods af at volumen er større.

Så skal man vente indtil man når den tunge dag i ugen igen, før musklen igen oplever en større belastning og hypertroferer.

Men ja, der er forskel. Jeg mener bare at et system som dette går i mod det jeg har lært, det progressive overload er svært at opretholde underprogrammet når den mekaniske belastning skiftes fra gang til gang.

Hvis jeg tager fejl, vil jeg meget gerne vide hvor, eller hvad jeg har misforstået?

Link to comment
Share on other sites

nu kommer jeg fra en ren praktisk baggrund (indenfor styrketræningen), men kunne man ikke bruge UP udelukkende på intensiteten. Altså holde rep-antallet fast, men lade %-rm svinge efter et fast forudbestemt mønster?? Det synes jeg selv har virket ret godt for mig ved flere lejligheder..
både og... Jeg tvivler på at det vil virke lige så godt, men det vender jeg tilbage til nedenunder.
Variation har altid været nøglen til fremgang, men forskning viser, at ændring i øvelsesmønstret ikke er det fundamentale for kontinuerlig fremgang, derimod variationen i repsantallet.

Efter senest 4-6 træningspas skal repsantallet variere for maksimal stimulans, mens man kan bruge samme øvelser i 6-8 uger inden stagnation begynder at optræde.

Enig med francis i at det er en lige lovlig generaliserende udtalelse. Man kan konstatere at det ser ud til at UP i hypertrofi øjemed er mere hensigtsmæssigt end lineære eller andre periodiseringsformer, men derfra og så til at springe ud i en så konkret konstatering er at stramme den. Jeg er ret uenig i betragtningen om at skifte øvelser. Igen mere om det nedenunder

Hele idéen med at variere over en uge er vel at stresse forskellige restitutive kapaciteter over en uge for at lade kroppen restituere fra en type belastning, imens man pøfører en anden type belastning. Hvor ofte der skal skiftes må afhænge af hvor hurtigt man tilpasser sig en given rep range/hvor erfaren man er og hvor lang tids restitution en given belastning kræver.
Interessant måde at anskue det på...

Her er hvordan jeg selv ser på det... Der er mange typer signaler, der regulerer hypertrofi positivt. Nogle er metabolske og nogle mekaniske. Generelt producerer træning med lange sæt, stor volumen og høj densitet mere metabolsk stress og egentlig "styrke"-træning med korte sæt, høj intensitet øvelser der producerer stor effekt producerer et godt mekanisk signal. Grunden til at jeg tror at UP ser ud til at give et større hypertrofi signal er simpelthen at flere af de positivt regulerende pathways bliver tændt i kraft af at man både kan producere et mekanisk signal og et metabolsk signal. Derfor skal der osse længere sæt til en gang i mellem (i.e. det er ikke nok bare at variere %RM).

Det ville være superinteressant hvis der i studiet jeg linker til var indført endnu en gruppe som lavede 1 sæt á 4 reps, 1 sæt á 6 reps og 1 sæt á 8 reps i hvertræning, altså endnu en gruppe med samme netto intensitet og volumen, men med endnu mere fordelte metabolske/mekaniske stimuli.

Ja, men hvis man ser firkantet på det. Hvis man går ud fra at når musklen har tilpasset sig en hvis belastning, så vil en belastning lettere en denne, ikke medføre en hypertrofisk effekt. Hvis vi snakker styrkeløft er sagen en anden.

Kurven over RBE, er høj i starten(stor volumen, lav intensitet), og efterhånden som volumen falder og intensiteten stiger, flader kurven ud, og det tager længere tid før vægtene ikke har noget træningsstimulus.

Dvs. at når den mekaniske belastning, det antal kg, som musklen er konditioneret til, er på x antal kg. Vil <x være uden hypertrofisk effekt.

hvis kroppen er vandt til en belastning på 100 kg, og man løfter 70kg, vil det jo ikke give det samme, på trods af at volumen er større.

Så skal man vente indtil man når den tunge dag i ugen igen, før musklen igen oplever en større belastning og hypertroferer.

Men ja, der er forskel. Jeg mener bare at et system som dette går i mod det jeg har lært, det progressive overload er svært at opretholde underprogrammet når den mekaniske belastning skiftes fra gang til gang.

Du er faldet i gryden med HST propaganda... Brian Haycock siger at den eneste ting, der dikterer RBE er intensitet og det passer bare ikke. Strengt taget referer RBE til alle effekter som aftager med gentagne påførte træninger og i litteraturen er det stort set altid markører for muskelskade. I virkeligheden er der ikke noget evidens for at fordi man udvikler mindre muskelskade, er der osse mindre proteinsyntese (jeg tror det til dels selv), så BH er faktisk ude på tynd is med sin udlægning af RBE. Det åbenlyse eksempel på at han tager fejl skulle være cirka sådan her:

1. kør doubler og singler ved 95% intensitet i 5 uger

2. kør så 20 rep breathers eller 10x10 træning i alt!

Jeg vil tro at du skulle opleve at arbejde ved 95% ikke "beskytter" mod det metabolske stress man udvikler ved denne anden form for træning.

Link to comment
Share on other sites

Kan godt være du har ret, det var bare noget jeg tænkte over, men det er jo reelt også kun den sidste uge, hvor der ikke er reps omkring 9+ hvilket ihvertfald for mig er høj reps.

Jeg regner med at starte på et meget lignende program inden for de næste par uger, skal lige have fundet nogle RM's og en uges decondition/deload. Det sidste stykke tid har jeg kørt skiftevist 10 og 5 reps med en løbende progression, men ikke så struktureret mest baseret på dagsformen. Det er ihvertfald dejligt afvekslende.

Link to comment
Share on other sites

Variation har altid været nøglen til fremgang, men forskning viser, at ændring i øvelsesmønstret ikke er det fundamentale for kontinuerlig fremgang, derimod variationen i repsantallet.

Efter senest 4-6 træningspas skal repsantallet variere for maksimal stimulans, mens man kan bruge samme øvelser i 6-8 uger inden stagnation begynder at optræde.

Jeg vil give jer ret i, at anden sætning ikke er fuldstændigt formuleret, korrekt syntaks forekommer i første sætning.

Ved al træning forekommer plateaufaser i større eller mindre grad og varighed. HVIS plateaufase optræder, har det vist at dette ofte sker efter 6-8 ugers træning med samme øvelse (progressionsrater ligger i dette interval i de fleste træningsprogrammer og det er ikke uden grund).

Optræder en sådan plateaufase (= stagnation) OG man FASTHOLDER samme reps.-antal, er et alternativ at vælge erstatningsøvelse.

En anden måde at komme uden om dette problem, kan netop være en ændring i repsantallet.

For at undgå de samme teoretiske udredninger som Incog. lægger for dagen, er det vigtigt at forstå, at en teoretisering ikke tegner et fuldstændigt og komplet billede af sandheden (den absolutte sandhed er endnu ikke kendt), derfor ’oplever’ visse personer at de fungerer udmærket i deres træning på bekostning af, at disse ’grundlæggende’ antagelser ikke forstås og dermed heller ikke følges i den træningsmetodik de nu selv er varm fortaler for, og som ellers producerer udmærkede resultater for netop dem der er bruger af det.

Dette er grunden til at jeg slutter mit indlæg med:

”…Om det har lige så stor indvirkning på alle, vides ikke, så hermed ingen garantier givet.”

Link to comment
Share on other sites

  • 10 months later...
  • 4 weeks later...

THE DEATH OF HST?

http://www.lacrosseforums.com/showthread.p...763&t=29153

Researched and Composed by Jacob Wilson and Gabriel "Venom" Wilson

Abstract

Current research has explored the degree of undulation (variation) necessary to optimize athletic preparedness. In this context Linear, Traditional, and Non-Traditional periodization strategies are analyzed. Special emphasis is placed on the advantages and disadvantages of increasing undulation.

--------------------------------------------------------------------------------

Introduction

Kramer (2004) suggested that ‘the key factor involved in going towards an individuals potential is ‘variation’ in the exercise stimulus with systematic rest programmed into the equation.’ Periodization is a method which accounts for the above criteria. This is expressed through O’Bryant (2004), who defines periodization as ‘a cyclic approach to training where periodic changes in training parameters

(volume, intensity, loading, exercise selection) are planned in order for the athlete to achieve optimal performance at the appropriate time.’ While it is acknowledged that variation and rest are key components to performance, current research attempts to tease out the laws which govern this complex process. In this context the purpose of this paper was to address the non linear nature of periodization in an attempt to explore the degree of variation necessary to optimize athletic preparedness. Special emphasis is placed on Traditional and Non-Traditional periodization.

Traditional Periodization

The following is a traditional format of periodization for strength athletes. Each cycle lasts for typically 4 weeks (Pearson et al., 2000; Haff, 2004).

General Fitness Cycle (GFC)—this involves the development of a general level of fitness for the novice athlete, before entering into their first training cycle of a periodized program. The athlete should lower intensity (15-20 reps), learn the exercise technique, and gain initial adaptation to resistance exercise (Pearson et al., 2000; Haff, 2004). The GFC is grounded on several theories such as the Learning Curve proposed by Fitts and Posner (1967). Another important factor is Thorndike’s second law, the Law of Effect (see Wilson (2004) The Psychological Refractory Period Paradigm), which states that if a response is satisfying to a learner, they will be more likely to repeat it. It is absolutely vital that the priori experience of the athlete is a satisfying one. Training heavy and hard-core from the onset could very well lead to stress, and dissatisfaction. Thus, it is advantageous to start with this general fitness cycle for beginners. How acute and chronic training variables should be programmed according to the fitness level of the athlete will be covered in-depth in future issues of JHR.

Hypertrophy Cycle (HC)—Also known as the preparation phase, the HC is defined by low to moderate intensity, limited rest, and relatively high volume. Typically 8-12 reps are performed, with 1-2 minutes of rest between sets. The goal is to develop peripheral factors such as stronger tendon, and ligament strength, and enlarge cross sectional area (muscle mass), in order to increase the capacity to express a given skill, and avoid future injuries (Pearson et al., 2000; Haff, 2004). Typically, the Hypertrophy Cycle is done first, as morphological changes (I.e. muscular hypertrophy) generally last the longest, followed by strength gains (Zatsiorsky, 1995).

1st Transition— this is the transition from the Hypertrophy Cycle, to Strength and Power mesocycles. The 1st Transition involves a progressive decrease in volume, an increase in intensity, and rest time, and emphasis on training specificity for the given event.

Strength Cycle—Repetitions here are typically 5-6, with 3-5 minutes rest in-between sets (Pearson et al., 2000).

Power Cycle—Repetitions are typically 2-4, with 2-3 minutes of rest between sets. Explosive movements should be employed.

It is strongly recommended that strength phases precede power and speed phases. And as will be discussed later on, many advise combining the two (Harris et al., 2000). There are two theoretical mechanisms for this. First, type II fibers are crucial for high force power movements such as sprinting, and weightlifting. These types of fibers are heavily targeted during a strength cycle. The second mechanism is that the speed of movement can be augmented if the workout results in high muscular force and the movement is ballistic (Harris et al., 2000). Evidence suggests that a periodized strength program followed by a power phase, produces superior results (Baker, 1996; Medvedev, 1981; Stone, 1982, 1987, and 1993).

Competitive Phase—here, intensity is heightened, volume is minimal, rest is 3-5 minutes, and exercises are specific to the criterion task. This can be considered a taper (also known as a regeneration cycle). The taper involves a systematic decrease in overload to facilitate a physiologic fitness peak (Wilson and Wilson, 2005). The goal is to remove fatigue, emphasize relaxation, and peak for a competition. For a complete analysis of this phase of training read the three tapering articles found in March 2005 of JHR.

Competition—here, the athlete enters the given competition. This may involve an event of short duration, or a season long training season. Recommendations will be given further on how to maintain training induced adaptations during the later scenario.

2nd Transition—depending on the accumulated fatigue, the participant will again taper after the competition, to relieve mental and physical stress, in anticipation of the next preparatory phase of training.

Start cycle over—the athlete now must assess weaknesses, and work on improving them.

The following table is a summary of traditional periodization (modified from Fleck and Kraemer, 2004):

Table 1. Comparison of Terminologies used to describe Traditional Periodization Models among Europeans, Americans, and American Strength/Power Athletes.

European Terminology

Preparation Phase

First Transition

Competition Phase

Second Transition Phase

Traditional American Terminology

Pre-season

Pre-season

In-Season

Off-season

American Strength/Power Terminology

Hypertrophy

Strength/Power

Peaking (tapering)

Active Rest

Comparisons of terminologies used to describe traditional periodization models among Europeans, Americans, and American Strength/Power Athletes found that Europeans order periodization as follows: 1.) Preparation phase 2.) First transition 3.) Competition phase 4.) Second Transition Phase. Americans traditionally order periodization as follows: 1.) Pre-season 2.) In-season 3.) Off-season. American strength/power authorities order periodization as follows: 1.) Hypertrophy 2.) Strength/power 3.) Peaking (tapering) 4.) Active rest.

Studies Supporting Traditional Periodization

Traditional periodization has been extensively investigated. The evidence clearly suggests that this style of training is superior to linear training. The following section will analyze several of these studies.

Willoughby (1993) investigated the effects of three selected mesocycle-length weight training programs using partially equated volumes on upper and lower body strength. Participants consisted of 92 experienced weight lifting males. Three experimental conditions were used. Each condition trained for 16 weeks, and were tested on the bench press and parallel back squat strength before, during, and after the experiment. Condition one performed 5 sets of 10 reps every week. Condition two performed 6 sets of 8 reps every week. Condition three used a traditional periodized program involving 4 weeks at 5 sets of 10 reps, followed by 4 weeks of 6 sets of 8 reps, followed by 4 weeks of 3 sets of 6 reps, followed by four weeks of 3 sets of 4 reps. Results found that the periodized program was superior for upper and lower body strength gains when compared to non-periodized conditions with partially equated volumes. Willoughby (1992) reported a similar study, and found likewise results.

Stone et al. (2000) compared the effects of 3 weight-training programs on the 1 repetition maximum squat. Participants were 21 college-age men. Condition one performed 5 sets of 6 reps every week. Condition two used a stepwise periodized program (volume by reps decrease in steps—traditional periodization). Condition three performed an overreaching periodized program. Condition one and two were equalized on programmed repetitions (720 and 732), and Group 3 was programmed at 18 and 19.4% fewer repetitions (590). Results found that a periodized strength program increased the 1RM squat to a greater extent than a constant repetition scheme, even when the repetitions were equalized (Group 1 vs. Group 2) or when the repetitions were substantially fewer (Group 1 vs. Group 3). These findings are in agreement with Bryant (1982) who reported similar results in squats with periodized protocols.

Numerous other studies attest to the superiority of a traditional periodized program over a linear program (Kraemer, 1997; O’ Bryant, 1988; Stone, 1981; Stowers, 1983; Fleck and Kraemer, 2004; Haff, 2004; Pearson et al., 2000; Rhea, 2002; Graham, 2002).

Non-Traditional Periodization

As described above, traditional periodization involves undulations (variations) from mesocycle to mesocycle. For instance, training for hypertrophy for one month, and strength the next month. Non-traditional periodization increases the degree of undulation. Two popular forms of non-traditional periodization are summated microcycles, and Daily Undulated Periodization. Summative microcycles involves undulations during each microcycle. Daily undulated periodization involves undulations during each workout. Thus, the degree of undulation is heightened in a non-traditional periodized format.

These training variables are fairly new; however, a great deal of interest has been placed on them recently, and each shows tremendous promise. The following sections will analyze both forms of non-traditional periodization, and prescribe how they can be applied to the athlete.

Daily Undulated Periodization (DUP)

Poliquin (1988) is often recognized as the founder of undulated periodization (Stone and Wathen, 2001). Poliquin (1988) investigated five ways to increase the effectiveness of the training program for football coaches. The first suggestion was the use of undulated periodization, which he also called alternate accumulation and intensification phases. Here, emphasis is placed on the importance of frequently varying both volume and intensity in order to induce neuromuscular adaptations. The rational behind this was that past research had found that strength programs lost their efficiency after only two weeks (Kulesza & Poliquin, 1985; Poliquin, 1985, B). Thus, it was concluded that if a stimulus is provided in exactly the same way, results would diminish quickly. This is in accord with the biological law of accommodation, which states that the response of an organism to the same given stimulus decreases over time. For instance, load for elite athletes is roughly 10 times that of beginners having 6 months experience. Elite weight lifters (Bulgarians) lift around 5,000 tons a year. The load for novices is only 1/10th this level! Further, it is noted to take 8+ years to reach an elite (professional) athletic status [Vladimir, 1995].

Poliquin proposed that traditional periodization (described above) had several drawbacks. First, a given mesocycle, such as a hypertrophy cycle, was typically not deviated from for at least 4 weeks. This length, however, would be accommodated to quickly, and gains would diminish. Secondly, traditional periodization involves a continual increase in intensity, resulting in an accumulation of stress, promoting overtraining. Lastly, he suggested that the hypertrophy gained from the first month of training would plummet over the next several months of strength/power phases, which involved higher intensities, and decreasing volumes (both of which are not conducive to hypertrophy), rendering the first month of traditional periodization practically worthless.

To combat these problems, Poliquin proposed undulated periodization. The following table demonstrates a modified program of traditional and undulated periodization strength programs, described by Poliquin (1988):

Table 2: Comparison of Traditional and Non-Traditional Undulated Periodized Strength Programs over 12 weeks

Traditional Periodization

Weeks

1-4

5-8

9-12

13-16

Reps

10

5

3

2

Sets

5

3

3

3

Non-Traditional Periodization

Weeks

1-2

3-4

5-6

7-8

8-10

11-12

Reps

10-12

4-6

8-10

3-5

5-7

2-3

Sets

3

5

4

5

4

6

Comparison of traditional and non-traditional undulated periodized strength programs over 12 weeks found that non-traditional periodized strength programs decrease volume at a much slower rate, and intensity increases more gradually than traditional periodized strength programs. Moreover, phases are only two weeks in duration, in comparison to four in the traditional protocol, decreasing the chance of accommodation.

Poliquin concluded that such a program was superior to traditional periodization, and would result in a continual increase in gains, and avoidance of physiological and psychological plateaus caused by stagnant programs.

Building on the work of Poliquin, many advantageous modifications have been made to his theory. First, the term undulated periodization is tautologous (redundant, a needless repetition of an idea, statement, or word). Periodization by its very nature is undulated. Authors have also said the argument is between linear and non-linear (i.e. “undulated”) periodization. But again, all forms of periodization are non-linear.

Therefore, a new, and proper name has been chosen in its place—daily undulated periodization. This variation emphasizes that it is not the inclusion of undulation that makes this technique novel, but rather the degree of undulation. While a traditional periodized program would modify its training program from one mesocycle to the next, daily undulated periodization (DUP) makes modifications every workout! Stone and Wathen (2001) propose that the terms traditional and non-traditional periodization should be used. DUP would fall under the later form of periodization.

DUP takes Poliquin’s theory to another level. Instead of modifying training every three weeks, workouts in this paradigm are modified every session. An example of DUP would be training an exercise three times a week, such as squats. Monday, the athlete would perform three sets of squats, at a 12-15 RM, Wednesday four sets at a 8-10 RM; Friday, three sets at a 1-5 RM; Monday, repeat cycle. Various examples of DUP will be discussed further on.

The following sections will be dedicated to further explaining the scientific rational behind DUP, as all research is theory driven.

SIR—Conditioned inhibition

Hull (1943) suggested the principle of reactive inhibition, which entails the organism reacting to inhibit the action which causes fatigue. This is manifested in the form of lactic acid during a set of squats, heavy eyes in states of sleep deprivation, among other examples. According to Hull (1943) reactive inhibition masks the positive effects of practice, and a period of rest is needed to dissipate this effect. Thus, it is imperative that the athlete dissipate the IR in order to peak performance.

What the athlete must be sensitive to is that you can actually condition reactive inhibition, such that when the athlete is confronted with a given training task, or environment, the body will react to inhibit the task before it causes fatigue, diminishing performance. Wilson (2005) masterfully explains this topic, and how to avoid such a predicament in, Hull’s Quantitative Equation on Human Performance. Here is a quote:

Hull (1943, 1952) also found another effect. He found that if practice continued without drive reduction that the response would go to extinction (the organism would stop responding). However, as figure 3 displays the response would regenerate with heightened amplitude after a period of rest. He further noted that if extinction were continued over several days (or longer) that the spontaneous generation of the response that occurred after rest would actually lower with each subsequent period of rest. The effect was denoted as conditioned inhibition. In postulate 9, Hull suggested that reactive inhibition produced a negative drive state. The drive state was negative, as lowering it required the organism to lower activity. Upon a lowering of activity the drive was reduced, which strengthened a learning response. This learning response is known as conditioned inhibition. An illustration can be seen when students enter what they deem as a boring class. Almost involuntarily they begin to yawn. Therefore according to this postulate, reactive inhibition can be conditioned, if practice occurs without reinforcement (Drive reduction). This may explain burn out. Athletes often set up goals which could take years to reach. They work incessantly towards the goal, but reinforcement or drive reduction will not occur until years of persistence have taken place. Under these conditions the behaviors associated with optimal performance will go to extinction, or be masked by conditioned inhibition. In this context, Knowlden (2004) suggested that participants set up short term goals, or smaller need states which can be reduced frequently. Further, it is also important to keep training fresh according to the Specificity Hypothesis. This hypothesis states that fatigue is specific to the system or effecter (body part) fatigued (Payne, 1979). In this context Payne (1979) investigated whether reactive inhibition in one effecter had negative effects on a second effecter. It was found that the effect was specific to the limb used. This suggests that an athlete can avoid conditioned inhibition by properly sequencing their workouts and training splits. This means that performing the same routine consecutively for weeks on end would produce fatigue specifically to that routine. Routines normally follow an asymptotic curve:

Figure 4 graphically depicts an asymptotic curve. The vertical axis

represents performance, and the horizontal axis represents total trials.

The vertical axis represents performance, while the horizontal axis represents the amount of trials or practice sessions that the routine has been performed. Note that as time increases, performance increases decreases. Zatsiorsky (1995) refers to this as the biological law of accommodation, which states that the response of a biological object to a given stimulus decreases over time. If performance is viewed as drive reduction, then consecutive sessions without performance increase can lead to conditioned inhibition. By changing the routine to (A) dissipate the reactive inhibition and (B) work on another area which has not been affected by the fatigue the participant can avoid conditioned inhibition. Such a concept is a form of periodization, which attempts to break a number of skills and competencies into manageable components.

As stated by Wilson (2005) periodization is an effective method to avoid conditioned inhibition.

Further, DUP is one of the most effective components of periodization that can be used to avoid conditioned inhibition and overtraining. For instance, overtraining is often caused by monotonous heavy training. Literature very clearly shows that high intensity strength training, performed too frequently, and or too long (in as little as two weeks in some cases) can result in overtraining (Haff, 2001). In both humans and animals, inclusion of a submaximal training day within a microcyle results in greater performance and fewer incidents of overtraining (Bruin et al., 1994; Foster, 1998). Therefore, including a light training day would be very beneficial.

Now, some argue that in order to avoid this predicament, the participant should simply train less frequently (Bradley, 2001). However, the above information showed that this would not be as effective, due to the monotony of such a split; moreover, the organism would still have great stress during every single workout. Finally, evidence suggests that the more frequently you can train, while avoiding overtraining, the better (Haff, 2001). Thus, inclusion of a lower intensity day would facilitate this, and concomitantly prevent overtraining. It has also been suggested that continually training heavy would result in neurological fatigue, and therefore, decrease strength gains. The solution for this has been to alternate between light and heavy workouts (Haff, 2001)..

Wilson and Wilson (2005) in Tapering Part 2 - Manipulation of Load for Peak Performance provided extensive support for increasing the frequency of training during a given split. For more information on this topic, refer to their dissertation.

Lastly, the constant stress of training heavy every single workout for an entire mesocycle can be overwhelming to the athlete, resulting in a conditioned inhibition on various criterion tasks such as squats. DUP is the key to avoiding this. Training light to moderate 2 out of 3 workouts or every other workout is more variable, and less stressful than training heavy every single workout. After performing 1-2 light workouts of squats, for instance, the athlete will be mentally, and physically ready to go heavy again. This will result in continued results, and prevention of conditioned inhibition and overtraining. In accordance with this theory, Haff (2001) suggests that a traditional periodization program would promote overtraining, and that for reasons such as this, a non-traditional approach may elicit better results.

Training for Multiple Goals

DUP has been suggested for athletes trying to achieve more than one goal. For example, a program that desires to gain both strength and hypertrophy can be designed using DUP (Hoffman, 2003; Fleck and Kraemer, 2004; Haff, 2004). This is significant for many athletes, such as bodybuilders, who desire strength gains to increase the capacity to gain muscle mass, but still, want to train within an optimal hypertrophy rep range—both can be done effectively by using DUP.

Size Principle

Another proposed advantage of DUP, is fiber specific depletion. The size principle states that smaller motor units are recruited first. Thus, recruitment follows this pattern: Type I > Type IIa > Type IIb. Wilson (2001) discusses this topic in Muscle Fibers Part Two. Here is a quote:

The motor unit fires with a frequency that is conducive to the fibers it stimulates. Simply put, a slow twitch motor neuron will cause the muscles in to twitch slowly. This again is conducive to endurance, while a fast twitch unit will fire quickly. The way your body recruits these motor units is fundamentally as follows. If the activity is light it will mainly stimulate slower twitch muscle fibers, when it becomes too intense it will call on its fast twitch IIA fibers, and last of all (for the highest intensity movements) it will recruit the fast twitch IIB fibers. This is why slow twitch muscles are called low threshold, and fast twitch IIB's are called high threshold. Low threshold because they are the first muscle fibers to be recruited and high threshold because they are only recruited under the most intense circumstances.

Thus, training light will place more stress upon slow twitch fibers, while allowing fast

twitch fibers to recovery. Conversely, training heavy will place more emphasize on

fast twitch fibers, allowing slow twitch fibers (and II A fibers) to recover. Haff (2001) therefore, proposes that including daily fluctuations in intensity will resist fiber specific fatigue, and increase performance. Note that the size principle is not always correct. For example, explosive movements results in selective recruitment of fast twitch fibers first by the nervous system. Wilson (2001) discusses several ways to manipulate such principles in the previously mentioned article.

Numerous studies support that stress is not general but very specific in its pattern. This supports the sequencing theory of periodization, presented in the first article of this series. According to this theory, fatigue is specific to the exercise utilized during a training session. Kraemer (2004) also supports these concepts. He proposes that on light days, you will not be using the same motor units as on heavy days, thus, allowing them to recover through active recovery protocols.

Results also suggest that muscle glycogen is depleted specific to slow and fast movements. In endurance events, there is an immediate loss of muscle glycogen in slow twitch fiber, but no significant loss in fast twitch fibers during the first 20 min. Conversely, in a speed or power task, there is a more rapid loss of fast twitch fibers, in comparison to slow twitch fibers. This is because the body is selectively recruiting fast twitch, or slow twitch motor units to a higher extent to accomplish a given task (Caplan, 2005).

Edited by Torben F.
Link to comment
Share on other sites

THE DEATH OF HST?

No offence, men har du læst det? :nonono:

Der er intet nyt i dokumentet, selvom det dog var spændende nok læsning. Der kommer INTET frem, der kan retfærdiggøre ovenstående det mindste. Det er REN blasfemi :wink: . Der kommer igen den enkelte undersøgelse frem om styrkefremgang, hvor en meget varieret DUP-rutine blev sammenlignet med en rutine, hvor der blev kørt med samme intensitet 4 uger ad gangen. Hurra! Meget overraskende resultat. Not! Derudover er der en masse andre lige gyldige undersøgelser om styrke, der ikke kommer i nærheden af at sammenligne noget, der er relevant for et system som HST, eller andre gode hypertrofiprogrammer for den sags skyld.

Jeg tror, at I ser spøgelser på baggrund af en misforståelse i forhold til deres definition af lineær periodisering.

I må ikke misforstå mig, da jeg synes, at det er et spændende emne, men den dokumentation, som nogle personer til tider postulerer skulle eksistere for overlegenheden af DUP og lignende for hypertrofi og over systemer, som eksempelvis HST, de eksisterer bare ikke, eller er i hvert fald ikke kommet frem.

Men selvfølgelig vil det da virke med godt med daglige variationer, men der er altså ikke kommet noget på banen, der skulle vise, at det skulle være fantastisk for hypertrofi.

Tror dog selv, at jeg vil forsøge at indkorporere lidt mere variation i mine programmer på ugentligt basis, smide nogle lette dage ind i de tunge uger osv, og se hvordan det går. Man bliver nemlig nødt til at gøre sig sine egne erfaringer på det her område, da der nok ikke er noget, der er universelt bedst.

Edited by Ugh Togoth
Link to comment
Share on other sites

Du har jo helt ret. :wink:

Tror sgu heller ikke, at jeg havde skrevet noget i tråden, hvis du ikke havde sparket lidt til HST. :laugh:

Jeg er dog ikke så HST-fanatisk, som jeg ellers har været, men måtte lige bryde ind for god ordens skyld, så jeg ikke skuffer nogen.

Men tak for linket. Ret interessant læsning, der nok får mig til at prøve nogle af pointerne af i mit program måske allerede fra næste uge.

Link to comment
Share on other sites

Jeg har rodet lidt med undulating principperne og har bikset dette program sammen... aner ikke om det kan bruges men nu har jeg lavet det og vil poste det... så kan folk bruge det hvis de har lyst :smile:

Det skal dog siges at både squat og dødløft skal være max der er konservative, dvs max man kan lave selv på en dårlig dag... altså et max hvor der er lidt i reserve :tongue:

Lunau__s_workout__Squat_Deadlift_.xls

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share